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The behavior of crude oil price volatility is analyzed within a conceptual framework of kinetic roughening
of growing interfaces. We find that the persistent long-horizon volatilities satisfy the Family-Viscek dynamic
scaling ansatz, whereas the mean-reverting in time short horizon volatilities obey the generalized scaling law
with continuously varying scaling exponents. Furthermore we find that the crossover from antipersistent to
persistent behavior is accompanied by a change in the type of volatility distribution. These phenomena are
attributed to the complex avalanche dynamics of crude oil markets and so a similar behavior may be observed
in a wide variety of physical systems governed by avalanche dynamics.
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I. INTRODUCTION AND BACKGROUND suggested the general dynamic scaling form with continu-
ously varying scaling exponenfg]

Dynamics of all realistic complex systems always exhibits
some part of randomness, either due to internal reasons, spe- (A, )ocd(AHAD ARy 2
cific for nonlinear dynamical systems, or caused by external
stochastic noise. Examples include many physical, biologiwhere ® is the scaling function. Examples of systems dis-
cal, computer, social, and economic systdis These sys- playing the general scaling dynami@ include certain self-
tems commonly exhibit dynamic scaling invariance, i.e.,organized critical sand pile modd8], ion sputtering of sur-
their behavior does not change under rescaling of variablefaces [9], and DLA-related growth processd40]. The
(for example, space and tilneombined with an appropriate continuously varied scaling exponents were found in some
rescaling of the observablé&) and the contro(X,t) param-  experiments in turbulendd 1], in paper wetting experiments
eters[2,3]. In such a case, the randomness of spatiotemporalL2], in numerical analysis of Kuramoto-Sivashinsky equa-
behavior may be characterized by the fluctuations of obsenion [13], and also were observed in Monte Carlo simulations
able  parameters, defined aso(A,t)={{[Z(X,t) of ion etch-front rougheninfl4].
—(Z(X,1))212)a)¥?, where(---), denotes the spatial aver-  The dynamics of financial markets has recently becomes a
age within a window of size\ and(---)g denotes the aver- focus of interest to physicists because of its rich and complex
age over different realizations. scaling behavior analogous to that commonly observed in

Typically, it is expected that the dynamic scaling invari- physical systems with many interacting urit$]. Many sta-
ance implies that fluctuations(A,t) satisfy the celebrated tistical properties of financial markets have already been ex-

Family-Viscek dynamic scaling ansdi] plored, and have revealed striking similarities between price
volatility dynamics and the kinetic roughening of growing
o (A )= tPE(ALE(D)) (1) interfaces[16]. Accordingly, physical models have been

shown to have wide application to understanding the dynam-

ics of stock market§l7]. This allows us to use the dynamic
where&(t) =t is the correlation length of the “space” scale scaling approach to study the kinetic roughening of growing
and the scaling function behaves &gy)y", if y<1, or interfaces[18], as well as the financial time series. In this
f(y)=1, if y>1; hereH is the so-called local randomness way, we expect that the scaling analysis of economic time
(or Hursy exponent;z is the dynamic exponent, an@  series might yield novel results, providing new insights into
=H/z is the growth exponerit5]. The Hurst exponent6]  dynamics of very different complex systerfis9]. In this
gives an indication of whether the system behavior is randonivork, the general dynamic scaling approach is used to study
(H=0.5) or displays persistence (85 <1) or antipersis- the scaling properties of crude oil market.
tence (GsH<0.5) [4].

The scaling form(1) is valid for a large variety of systems
far from equilibrium, as well as for critical phenomeftH.
Specifically, the Family-Viscek dynamic scaling ansatz is
commonly applied to describe the kinetic roughening of The world oil is a capital-intensive environment charac-
growing interface$4]. However, generally, a simple scaling terized by complex interactions deriving from the wide vari-
law (1) does not hold2,3], instead there is an evidence that ety of products, transportation-storage issues, and stringent
the logarithms of the parameters can be used to produce environmental regulation. Crude oil is the world’s most ac-
data collaps¢3]. In this way, Sittler and Hinrichsell8] have  tively traded commaodity, accounting for about 10% of total

Il. GENERALIZED SCALING DYNAMICS OF CRUDE
OIL MARKET
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crude oil price in constant 1983 US dollar@6] over the
period from 30 December 1984-23 June 2003 representing
5181 observationgweekends and business holidays are ex-

40 + '

5 301 cluded. Then we construct 699 time series of realized vola-
e tility [27]
g
Q 4
g% Va(D) =[(P2(1))n—(P(1))3]*2 (3
10 + of length T=4096 business day®bout 16 business years
@) for different time horizonsn=2,3,...,700(from 2 business
04— P e ; days to about 3 business yeamsheret is the business time
30/12/1983  08/06/1990  15/11/1996  25/04/2003 and(---), denotes the business time average within a win-
Date dow of sizen. In this study, all records of volatilitjsee Figs.

2(b)—2(d)] correspond to the period from 15 October 1986 to
FIG. 1. Time records of West Texas Intermediate crude oil spob3 December 200p28]. One can see that the price volatility

price in the curreni{l) and in the 1983 constari®) dollars per changes from day to day in such a way that time series of
barrel, $/bbl(source: Bloomberg databaf5]). The graphs corre- atjlities V,(t) realized at different time intervals look
spond to the period from 30 December 1983 to 23 June 2003. similar.

world trade[20]. The crude oil market is characterized by . . .
extremely high levels of price volatility. Fluctuations in B. Scaling analysis techniques
crude oil price are caused by supply and demand imbalances To detect and quantify the dynamic scaling behavior of
arising from events such as wars, changes in political reprice volatility within a framework of interface roughening
gimes, economic crises, formation breakdown of trade agreatynamics, here the volatility horizamis treated as an analog
ments, unexpected weather patterns, E2d] At the same of time variable(t), while the business timeis treated as an
time, many of the price forecasting models are based on thanalog of lateral extenfX) of growing interface. Accord-
belief that historical price series exhibit some statisticalingly, the price volatility fluctuations are characterized by the
properties that permit to predict future price movemé¢ngs. analog of interface height fluctuatioh4], defined as

A. Data analyzed (N, 7)=([Va(H) =(Va(1) JA)RZ= @ (" 0,nf7), - (4)

To quantify the scaling dynamics of crude oil market, wewhere(: - -), denotes the business time average within a win-
studied the daily records of the spot prid@8] P(t) [see dow of sizer and(--)g denotes the average over different
Figs. 1 and 2a)] and the price volatilitied/,(t) [see Figs. realizations.
2(b)—2(d)] from the West Texas Intermediaf@4] (WTI) To characterize the scaling properties of time series,
crude oil price listing$25]. Specifically, we analyze the WTI within a framework of the general dynamic scaling concept

(2), (4) the volatility growth exponeniB(7) can be deter-

sl @ Ve o mined from the scaling behavior
34
3 2 f a(n,A)xnf? (5)
g 201
* 14 for different intervals of business time To test the correla-
5 \ : o . T tions in busjness time scaler£ T=4096) we studied the
15101986  19/08/1993  23/06/2000 0 1024 2048 3072 4096 autocorrelation functiong29]
Date time, business days
vs Vool g C(7)=(P(t+7)P(t))7/(P*(t))7
3 1 n=20
and

ik A P A Ty 0
0 1024 2048 3072

hMWUJ ‘MM Co(7) = (Va(t+D)Vy(D)r (Va(t))7, (6)

4096 0 1024 2048 3072 4096 where the angle brackets denote the time average. The be-
time, business days ime, business days haviors of correlation function at—0 and7— T— char-
FIG. 2. (& Time record of West Texas Intermediate crude oil acterize the Sto.ChaStIC memory of th.e time SEres. Further-
o . more, the scaling behavior of the price volatility was also
spot price in the 1983 constant dollars per ba(#bbl); and (b)— . . .
(d) realized price volatilities for the period of 4096 business days'm/es'“g"’ltecj by calculating the structure factor or power
for different horizons(b) n=3, (c) n=8, and(d) n=18 business spectrum
days. All time series correspond to the period from 15 October 1986 ~ ~
to 23 December 2002. Sn(@) =(V(0)Vn(— 0))x 0T VE (ont2MND) - (7)
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where V(o) =T Y2[ [V, (1) = (V,(1))rlexplondt is the  cofa | b
Fourier transform of the volatility recor@ --) and F(y) is 11 — ©
the scaling function, such thaE,(y)xy", if y<1, or 0_‘1) - :\
F.(y)=1, if y>1. The precise form of the autocorrelaton °*F o s 100 150 1 14

0.48

function is, however, not known. This makes difficult to use |\ G = 0.09241

Egs.(6), (7) for the quantitative measure of Hurst exponent : R = 0.9967
for finite time series. -0-50 - - 0.1 e
i i i : 10 100 1000
To quantify the intensity of long range correlations, the fime ervsiliongy @ imelnfarvalionglhys
local randomnes$Hursy exponents ofP(t), as well as of ;4 _ -
each time record/,(t), were determined by five methods ., f"® s F¥ %

adopted from theBENOIT 1.3 software[30]: the rescaled- i
range analysis, the roughness length, the variogramm, the |

power-spectrum, and the wavelet methods. The rescaled 05

R/G =1.0067T 0.0001 i

range analysis is one of the oldest and best-known method 5 S=9E-8T

for determiningH. This method was proposed by Mandel- | Romoee R? =0.8941

brot and Wallis[31] and is based on previous hydrological g 106 40660 1000‘;'000003_0001 5.0 1
studies of Hursf32]. The rescaled rang@/o is defined as fimedinterval Tengih; 7 frequency, w=1/7

the ratio of the maximal range of the integrated sig{Rl

normalized to the standard deviatigd). For time series FIG. 3. (a) Autocorrelation function of price record shown in

characterized by long-range correlations the expected valugg- 2@ [the inset show€(7) in semilog coordinatgsand (b)—(d)
of rescaled range scales Boo 7. If the time record pos- fractal graphs of price record obtained (ty the rescaled rang(ac)
sesses only short-range correlations then the log-log plot df¢ roughness length, arid) the power spectrum methodtme
R/o is also a straight line with slope 0.5. L[83], however, nterval length in business days

showed that this method may be significantly biased when . , .
there is short-term dependence in the form of heteroskedathe help of@Rrisk software[36], which ranks the fitted dis

ticity or autocorrelation. The roughness-length and vari—%ribUtionS using thre_e test sta_tis_tic,s?, Anderson-Darling,
: ' . and Kolmogorov-Smirnov statisti¢87].
ogramm methods are based on the scaling behavior of the
standard deviationo,(7)"n and the semivariance Var
« 721 Problems with these methods are that the choice of
the sampling interval, as well as the determination of the We find that the autocorrelation functidiFig. 3(a)] of
slope of the plot, may affect the result of Hurst exponentcrude oil price recordFig. 2(a)] decays exponentialljsee
estimation. Power spectral methods are based on power spéaset in Fig. 3a)] as Cxexp(/7), with a characteristic time
tral analysis, which can be applied to time series data. The,=120 business day&@bout the half business yeaFur-
power spectral density functidid) for random data describes thermore, we find that the Hurst exponent of price record is
the data in terms of spectral density of its mean square valugqual toH=0.50+0.02 [see Figs. @)—3(d) and 4 [38].
for different frequencies and scales 8gx7 ?"n"!. The  This means that there are no long-range correlations in the
Fourier transform uses cosines, sins and exponentials to reprude oil price record. This is consistent with the finding that
resent a time record, and so it is more useful for representinghe crude oil spot price distribution is a symmetric logistic
linear functions and it is less suitable for analyzing nonlineardistribution[see Fig. a)], which provides the best fitting of
chaotic time series. Wavelets offer an alternative method telata according to three test statistics mentioned above.
analyze complex time serig84]. The Wavelet method is At the same time, we find that the realized volatilities
based on the property that Wavelet transforms of the selffFig. 2(b)—2(d)] possess a statistical self-affine invariance
affine traces have self-affine properties. This method is ap-
propriate for analysis of nonstationary series, i.e., where the

C. Results and discussion

variance does not remain constant with increasing length ofg ? g 2 c)

the data set. Wavelets are similar to, but an extension 0T§ % %é 0

Fourier analysis and the wavelet transform is computation-< 10 <,

ally similar in principle to the fast Fourier transform. The ] , , , al : : ,

aim of the wavelet transform is to express an input signal o 1024 2048 3072 4096 0 266 512 768 1024

into a series of coefficients of specified “energy.” The dis- fime scale \ time scale

crete numbers associated with each coefficient contain all th b) d)

information needed to completely describe the series pro-§ 2 g ?

vided one knows which analyzing wavelet was used for the g © § 0

decomposition. Wavelet transforms makes use of scaling™ -2 < 2

functions that have the property of being localized in both 41 : : : <44 . . |

time and frequency. A scaling coefficiantca™n "2 charac- 0 512 1024 153 2048 O 128 256 384 512
time scale time scale

terizes and measures the width of a wavelet, whatenotes
a scale paramet¢B5]. The statistical distributions of crude FIG. 4. (a) Price record as in Fig.(3) and (b)—(d) three first
oil price and realized price volatilities were analyzed with wavelets(time scale in business dayd,,=0.50).
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FIG. 5. (a) Conditional probability distribution of crude oil price
in $/bbl (bins: experimental data, solid lines: fitting by the logistic 00001

10 100 1 10 100

distribution. (b) Conditional probability distributions of price vola- ! fime interval length, © time lag, n
tility for horizon n=3 [bins: experimental data, solid lines fitting by
the Pearson distributiof15) (p value is 0.4}, inset: the distribution FIG. 6. (a)—(c) Fractal graphs of price volatility records shown

tail in the semilog coordinatgs(c) Conditional probability distri-  in Figs. 2b)—2(c) obtained by(a) the roughness lengttip) the
butions of price volatility for horizomn=18 [bins: experimental variogram, andc) the rescaled-range methdasimbers correspond
data, solid lines: fitting by the log-logistic distributi¢h?) (p value  to different horizons(1) corresponds tm=3, (2) corresponds to

is 0.38, inset: the distribution tail in the log-log coordinate&) n=8, (3) corresponds ta=20, and(4) corresponds ta=60 busi-
Cumulative distribution of normalized avalanches in log-log coor-ness dayk (d) Horizon dependence of the Hurst exponérglues
dinates[circles: experimental data, solid lines: the graph of Eq.of H, are averaged through five methpds the semilog coordi-
(19); the squared coefficient of correlation between the data anehategtime scale in business days, circles and squares: experimental

theoretical line is equal tR?=0.9549]. data, solid line: data fitting by Eq8), R?=0.9882].

within wide ranges of business time scgle<r<7:(n)] whenn<18, (10

characterized by well defined Hurst exponétyi for each

horizonn [39] [see Figs. @&)—6(d)]: while 8=0.5 for anyr, whenn>18. (11)
H,=0.062h, whenn<12 (8)

We also find that the interval of correlations in the busi-
ness time scale increases with the horizon of volatility as

and 7c=n?™7 where the dynamic exponent is a functionrof
and 7 if n<18, while z=H/B=1.66 for long horizons

Accordingly, we find that the long-horizon volatilityn(

Our finding means that the long horizon realized volatilities= 18) satisfies the Family-Viscek dynamic scaling an$atz
(n>8) are persistent, i.e., volatility increments are positivelywhereas for horizons smaller than 18 business days the crude
correlated in business time, whereas the short-horizon volail price volatility satisfies the generalized dynamic scaling
tilities (n<8) are antipersistent, i.eV,,-g(t) displays nega- law [3]
tive autocorrelations in business time.

Furthermore, we find that the transition from antipersis- a(n,7)cF - ((r)HM nf), (12
tent to persistent volatility ah=8 is accompanied by an
abrupt change in the behavior of rpi¥,(T=4096); versusn  with continuously varying scaling exponent8) and (10),
[Fig. 7(a)], nevertheless the time-average and the standanghich are quasihomogeneous functions satisfying the partial
deviations ofV,(7) have no anomaly at=8 [see Fig. Tb)].  differential equatiorj7]
Specifically, the time averaged volatility behaves as
(Vn(7)) r=a09¢<N°® up to n=700, while the standard devia- dIn(H,) aln(B)
tion of realized volatility behaves as(7=T=4096)xn%%> ain(n) __ ain(7) =1 (13
up ton=18, but it scales as=n°® when the realized vola-

tility is characterized by the constant Hurst exponéht This implies that scaling functioR possesses a local scaling

=0.83+0.04. invariance[3], i.e.,
Moreover, we find that the growth exponent behaves as

[see Figs. i), 7(0)] F(AD)T™ (An)ED)Y=\F (1) ™ B, (14)
B=0.25r-/7 if 7<7c(n) andB=0.25 if 7>7c(N), where\ is a dilatation parameter and<18, 7<7.
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10 £ = 10 _ -1
T 3 (Vo= $)lp)” -

i V)= ST+ (Vo 9P

11 where y=2.55+0.07[41] and

min(V,))

. \
2oy | ] | p=0.100"3*¥7R?=0.998, ¢=0.0081""*{R?=0.996;
s | @ (19
: ! :

0.001 + 0.1 +
1 100 10000 0.1 1 10 i.e., the long-horizon volatility distribution is fat tailed, but it
ime fag, e is well outside the stable vy range G<y<2 [42].
100 Furthermore, we find that the statistical distribution of
~b) 128 P avalanches is also best fitted by the log-logistic distribution
& ) ' ; with =0, p=0.75n"68 and y=1.46+0.02 (the p value is
< e ﬂ/ 0.48; obeying a power law tailsee Fig. &d)]:
>1t K
»M‘/ “rooe Ferd— {Q/mediai Q(7)]}~14° (19
o with the scaling exponeny within the stable Ley range
0.01 t+ 1 t +
1 100 10000 il 10 100 1000 [41]' L X i .
time lag, n time lag, n This indicates that observed behavior of crude oil price

_ _ - volatility can be interpreted in terms of scale-free ava-

FIG. 7. Results of the scaling analysis of crude oil price vola-janches, which define the intrinsic horizon scale and build up
tility. (@) The minimum of realized volatility versus time horizon long-range correlations in the price volatilif$3]. Such a

[points: experimental data, lines: power law fitd) min(V,) behavior can be modeled with the use of Kuramoto-

— 10 5n395 pP2_ H _ 0.66 P2 _ . . . . . .
=107°n"" R*=0.97 and2) min(Vy)=0.0141"", R°=0.993].(b)  gjyashinsky equatiofil3] with white or correlated noise.
The mean(1) and the standard deviatid,3) of realized volatility

(7=4096) versus time lagn [points: experimental data, lines:
power law fittings. (1) (Vn(7=4096),=1.51%5 R2=0.999, (2)
o{Vn(7=4006) =0.1&1°*, R*=0.995, and(3) o{V,(7=4096) We show that the time series of price volatility can be
=0.In™™ R"=0.998; they axis labels indicate the quantit(c)  analyzed within a framework of kinetic roughening of mov-
The VO|a.1EI|Ity grpwth exponenp versus normallzgd time interval ing interface, treating the length of series as an analog of
for \(Olatlllf_y ho.n:o_nsn=3 (1,2) andn=60 (3); points: results of  gna4ia| variable and the horizon of volatility as an analog of
analysis, lines: fitting by Eqs(10) and (1D). (d) Horizon depen- 0 ariaple. In this way we find that crude oil volatility
dence of dynamic exponent for price volatilifime scale in busi- possesses a general dynamic scaling behavior. Furthermore
ness days we observe a transition from antipersistent to persistent be-
0Ipavior of the volatility in the horizon scale. This transition is

The crossover from antipersistent to persistent behavi L ccompanied by the chanae in the tvpe of volatility distribu-
indicates the existence of intrinsic horizon scale of price P y 9 yp Y

volatility (see Ref[40]), nc~8. To get a deeper insight into gﬂe’dﬁglrcms I'ﬁ:rti'ztg'rllid for short horizons and it is heavy-
the price volatility dynamics, we also perform the statistical o rfinding hay .t ntially wide-ranaina imolication
analysis of volatilitiesV,(7) and avalanches defined as . u h gs have po e” atly e-ra Ig hg mp c;a ons
Q(n.7) =V, (1)~ V(7). in econop yS|c§44],_z_as well as in statistical physics of com-
We find that for short time horizons<8, the conditional plex sysjcems. Speuﬂgally, we exp_ect that the crossover fr_om
probability of realized volatility is best fiitted by the light- antipersistent to persistent behavior should be observed in a

. AT wide variety of systems displaying generalized scaling dy-
tailed Pearson distributioffig. 5(b)] namics with continuously varying exponefi#5]. The exis-

IIl. CONCLUSIONS

(V,— )~ D V,— ¢ tence of a “universal” mechanism which gives rise to cross-
f(Vp)= =T ;{ ) (15 over from antipersistent to persistent behavior in systems of
P (v) different nature could provide a new insight to the physics of
with horizon dependent parameters complex systems governed by avalanche dynamics leading
to generalized scaling dynamics with continuously varying
p=0.40"4R?=0.95 and $=0.1"2%9R?>=0.97) exponents.
(16)
and y=3.6=01; I'(y) is the gamma function. ACKNOWLEDGMENTS
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[41] We find thaty is independent of the horizon of volatility for namical attractor poised at criticality for long-time horizons,
time lagsn>8. when volatility obeys the Family-Viscek dynamic scaliffh
[42] It should be pointed out that the parameters of volatility distri- and could therefore be predictable in statistical sense.

butions, as well as the scaling exponents in Egsand(14), [44] Accurate modeling and forecasting of commaodity price vola-
are not sensitive to the sampling period. Essentially the same tility is of paramount importance in risk management and op-
results were also obtained for the period from 9 April 1987 to tion pricing.

23 June 2003. [45] We note that Monte Carlo simulations of reactive ion etch-
[43] Our findings suggest that the dynamics of price volatility is front roughening 9] described by the Kuramoto-Sivashinsky
governed by self-organized criticalitf§OQ), similar to that equation predict the generalized scaling dynamics with time-

which is commonly illustrated conceptually with avalanches in dependent roughness exponent and continuous transition from
a pile of sand grains. The most essential feature of the SOC is  antipersistent to persistent front roughness regime. This allows
that the system jumps from one metastable state to another by a possibility to use a similar model for simulations of realized

avalanche dynamics up to critical state without external forc- and employed volatility of crude oil prices. Unfortunately, the
ing. Accordingly, the price volatility evolves through transient crossover from antipersistent to persistent roughness was not
states at time horizons<< 18, which are not critical, to a dy- discussed in Ref9].
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