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Crossover from antipersistent to persistent behavior in time series possessing
the generalyzed dynamic scaling law
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The behavior of crude oil price volatility is analyzed within a conceptual framework of kinetic roughening
of growing interfaces. We find that the persistent long-horizon volatilities satisfy the Family-Viscek dynamic
scaling ansatz, whereas the mean-reverting in time short horizon volatilities obey the generalized scaling law
with continuously varying scaling exponents. Furthermore we find that the crossover from antipersistent to
persistent behavior is accompanied by a change in the type of volatility distribution. These phenomena are
attributed to the complex avalanche dynamics of crude oil markets and so a similar behavior may be observed
in a wide variety of physical systems governed by avalanche dynamics.
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I. INTRODUCTION AND BACKGROUND

Dynamics of all realistic complex systems always exhib
some part of randomness, either due to internal reasons,
cific for nonlinear dynamical systems, or caused by exter
stochastic noise. Examples include many physical, biolo
cal, computer, social, and economic systems@1#. These sys-
tems commonly exhibit dynamic scaling invariance, i.
their behavior does not change under rescaling of varia
~for example, space and time! combined with an appropriat
rescaling of the observables~Z! and the control~X,t! param-
eters@2,3#. In such a case, the randomness of spatiotemp
behavior may be characterized by the fluctuations of obs
able parameters, defined as s(D,t)5^^@Z(X,t)
2^Z(X,t)&D#2&D&R

1/2, where^¯&D denotes the spatial ave
age within a window of sizeD and ^¯&R denotes the aver
age over different realizations.

Typically, it is expected that the dynamic scaling inva
ance implies that fluctuationss(D,t) satisfy the celebrated
Family-Viscek dynamic scaling ansatz@4#

s~D,t !}tb f „D/jz~ t !… ~1!

wherej(t)}t1/z is the correlation length of the ‘‘space’’ sca
and the scaling function behaves asf (y)}yH, if y!1, or
f (y)'1, if y@1; hereH is the so-called local randomnes
~or Hurst! exponent;z is the dynamic exponent, andb
5H/z is the growth exponent@5#. The Hurst exponent@6#
gives an indication of whether the system behavior is rand
(H50.5) or displays persistence (0.5,H,1) or antipersis-
tence (0<H,0.5) @4#.

The scaling form~1! is valid for a large variety of system
far from equilibrium, as well as for critical phenomena@1#.
Specifically, the Family-Viscek dynamic scaling ansatz
commonly applied to describe the kinetic roughening
growing interfaces@4#. However, generally, a simple scalin
law ~1! does not hold@2,3#, instead there is an evidence th
the logarithms of the parameters can be used to produ
data collapse@3#. In this way, Sittler and Hinrichsen@3# have
1063-651X/2004/69~3!/036121~7!/$22.50 69 0361
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suggested the general dynamic scaling form with conti
ously varying scaling exponents@7#

s~D,t !}F~DH~D,t !,tb~D,t !!, ~2!

whereF is the scaling function. Examples of systems d
playing the general scaling dynamics~2! include certain self-
organized critical sand pile models@8#, ion sputtering of sur-
faces @9#, and DLA-related growth processes@10#. The
continuously varied scaling exponents were found in so
experiments in turbulence@11#, in paper wetting experiment
@12#, in numerical analysis of Kuramoto-Sivashinsky equ
tion @13#, and also were observed in Monte Carlo simulatio
of ion etch-front roughening@14#.

The dynamics of financial markets has recently become
focus of interest to physicists because of its rich and comp
scaling behavior analogous to that commonly observed
physical systems with many interacting units@15#. Many sta-
tistical properties of financial markets have already been
plored, and have revealed striking similarities between pr
volatility dynamics and the kinetic roughening of growin
interfaces @16#. Accordingly, physical models have bee
shown to have wide application to understanding the dyna
ics of stock markets@17#. This allows us to use the dynami
scaling approach to study the kinetic roughening of grow
interfaces@18#, as well as the financial time series. In th
way, we expect that the scaling analysis of economic ti
series might yield novel results, providing new insights in
dynamics of very different complex systems@19#. In this
work, the general dynamic scaling approach is used to st
the scaling properties of crude oil market.

II. GENERALIZED SCALING DYNAMICS OF CRUDE
OIL MARKET

The world oil is a capital-intensive environment chara
terized by complex interactions deriving from the wide va
ety of products, transportation-storage issues, and strin
environmental regulation. Crude oil is the world’s most a
tively traded commodity, accounting for about 10% of to
©2004 The American Physical Society21-1
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world trade@20#. The crude oil market is characterized b
extremely high levels of price volatility. Fluctuations i
crude oil price are caused by supply and demand imbala
arising from events such as wars, changes in political
gimes, economic crises, formation breakdown of trade ag
ments, unexpected weather patterns, etc.@21# At the same
time, many of the price forecasting models are based on
belief that historical price series exhibit some statisti
properties that permit to predict future price movements@22#.

A. Data analyzed

To quantify the scaling dynamics of crude oil market, w
studied the daily records of the spot prices@23# P(t) @see
Figs. 1 and 2~a!# and the price volatilitiesVn(t) @see Figs.
2~b!–2~d!# from the West Texas Intermediate@24# ~WTI!
crude oil price listings@25#. Specifically, we analyze the WT

FIG. 1. Time records of West Texas Intermediate crude oil s
price in the current~1! and in the 1983 constant~2! dollars per
barrel, $/bbl~source: Bloomberg database@25#!. The graphs corre-
spond to the period from 30 December 1983 to 23 June 2003.

FIG. 2. ~a! Time record of West Texas Intermediate crude
spot price in the 1983 constant dollars per barrel~$/bbl!; and ~b!–
~d! realized price volatilities for the period of 4096 business da
for different horizons:~b! n53, ~c! n58, and~d! n518 business
days. All time series correspond to the period from 15 October 1
to 23 December 2002.
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crude oil price in constant 1983 US dollars@26# over the
period from 30 December 1984–23 June 2003 represen
5181 observations~weekends and business holidays are
cluded!. Then we construct 699 time series of realized vo
tility @27#

Vn~ t !5@^P2~ t !&n2^P~ t !&n
2#1/2 ~3!

of lengthT54096 business days~about 16 business years!,
for different time horizonsn52,3,...,700~from 2 business
days to about 3 business years!, wheret is the business time
and ^¯&n denotes the business time average within a w
dow of sizen. In this study, all records of volatility@see Figs.
2~b!–2~d!# correspond to the period from 15 October 1986
23 December 2002@28#. One can see that the price volatilit
changes from day to day in such a way that time series
volatilities Vn(t) realized at different time intervalsn look
similar.

B. Scaling analysis techniques

To detect and quantify the dynamic scaling behavior
price volatility within a framework of interface roughenin
dynamics, here the volatility horizonn is treated as an analo
of time variable~t!, while the business timet is treated as an
analog of lateral extent~X! of growing interface. Accord-
ingly, the price volatility fluctuations are characterized by t
analog of interface height fluctuations@4#, defined as

s~n,t!5^@Vn~ t !2^Vn~ t !&t#
2&R

1/2}F~t Hn,nb~t!!, ~4!

where^¯&t denotes the business time average within a w
dow of sizet and ^¯&R denotes the average over differe
realizations.

To characterize the scaling properties of time seri
within a framework of the general dynamic scaling conce
~2!, ~4! the volatility growth exponentb~t! can be deter-
mined from the scaling behavior

s~n,D!}nb~t! ~5!

for different intervals of business timet. To test the correla-
tions in business time scale (t<T54096) we studied the
autocorrelation functions@29#

C~t!5^P~ t1t!P~ t !&T /^P2~ t !&T

and

Cn~t!5^Vn~ t1t!Vn~ t !&T /^Vn
2~ t !&T , ~6!

where the angle brackets denote the time average. The
haviors of correlation function att→0 andt→T→` char-
acterize the stochastic ‘‘memory’’ of the time series. Furth
more, the scaling behavior of the price volatility was al
investigated by calculating the structure factor or pow
spectrum

Sn~v!5^V& n~v!V& n~2v!&}v~2Hn11!Fn~vn1/z~n,t!!, ~7!
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CROSSOVER FROM ANTIPERSISTENT TO PERSISTENT . . . PHYSICAL REVIEW E 69, 036121 ~2004!
where V& n(v)5T21/2*T@Vn(t)2^Vn(t)&T#exp(ivt)dt is the
Fourier transform of the volatility record~¯! and F(y) is
the scaling function, such thatFn(y)}yH, if y!1, or
Fn(y)'1, if y@1. The precise form of the autocorrelatio
function is, however, not known. This makes difficult to u
Eqs.~6!, ~7! for the quantitative measure of Hurst expone
for finite time series.

To quantify the intensity of long range correlations, t
local randomness~Hurst! exponents ofP(t), as well as of
each time recordVn(t), were determined by five method
adopted from theBENOIT 1.3 software @30#: the rescaled-
range analysis, the roughness length, the variogramm,
power-spectrum, and the wavelet methods. The resca
range analysis is one of the oldest and best-known meth
for determiningH. This method was proposed by Mande
brot and Wallis@31# and is based on previous hydrologic
studies of Hurst@32#. The rescaled rangeR/s is defined as
the ratio of the maximal range of the integrated signal~R!
normalized to the standard deviation~4!. For time series
characterized by long-range correlations the expected v
of rescaled range scales asR/s}tH. If the time record pos-
sesses only short-range correlations then the log-log plo
R/s is also a straight line with slope 0.5. Lo@33#, however,
showed that this method may be significantly biased w
there is short-term dependence in the form of heteroske
ticity or autocorrelation. The roughness-length and va
ogramm methods are based on the scaling behavior of
standard deviationsn}(t)Hn and the semivariance Va
}t2H. Problems with these methods are that the choice
the sampling interval, as well as the determination of
slope of the plot, may affect the result of Hurst expone
estimation. Power spectral methods are based on power s
tral analysis, which can be applied to time series data.
power spectral density function~7! for random data describe
the data in terms of spectral density of its mean square v
for different frequencies and scales asSn}t22Hn21. The
Fourier transform uses cosines, sins and exponentials to
resent a time record, and so it is more useful for represen
linear functions and it is less suitable for analyzing nonlin
chaotic time series. Wavelets offer an alternative method
analyze complex time series@34#. The Wavelet method is
based on the property that Wavelet transforms of the s
affine traces have self-affine properties. This method is
propriate for analysis of nonstationary series, i.e., where
variance does not remain constant with increasing lengt
the data set. Wavelets are similar to, but an extension
Fourier analysis and the wavelet transform is computati
ally similar in principle to the fast Fourier transform. Th
aim of the wavelet transform is to express an input sig
into a series of coefficients of specified ‘‘energy.’’ The di
crete numbers associated with each coefficient contain al
information needed to completely describe the series p
vided one knows which analyzing wavelet was used for
decomposition. Wavelet transforms makes use of sca
functions that have the property of being localized in bo
time and frequency. A scaling coefficientw}aHn11/2 charac-
terizes and measures the width of a wavelet, wherea denotes
a scale parameter@35#. The statistical distributions of crud
oil price and realized price volatilities were analyzed w
03612
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the help of@RISK software@36#, which ranks the fitted dis-
tributions using three test statistics:x2, Anderson-Darling,
and Kolmogorov-Smirnov statistics@37#.

C. Results and discussion

We find that the autocorrelation function@Fig. 3~a!# of
crude oil price record@Fig. 2~a!# decays exponentially@see
inset in Fig. 3~a!# asC}exp(t/t0), with a characteristic time
t05120 business days~about the half business year!. Fur-
thermore, we find that the Hurst exponent of price record
equal toH50.5060.02 @see Figs. 3~b!–3~d! and 4# @38#.
This means that there are no long-range correlations in
crude oil price record. This is consistent with the finding th
the crude oil spot price distribution is a symmetric logis
distribution@see Fig. 5~a!#, which provides the best fitting o
data according to three test statistics mentioned above.

At the same time, we find that the realized volatilitie
@Fig. 2~b!–2~d!# possess a statistical self-affine invarian

FIG. 3. ~a! Autocorrelation function of price record shown i
Fig. 2~a! @the inset showsC(t) in semilog coordinates# and~b!–~d!
fractal graphs of price record obtained by~b! the rescaled range,~c!
the roughness length, and~d! the power spectrum methods~time
interval length in business days!.

FIG. 4. ~a! Price record as in Fig. 2~a! and ~b!–~d! three first
wavelets~time scale in business days,HW50.50).
1-3
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BALANKIN et al. PHYSICAL REVIEW E 69, 036121 ~2004!
within wide ranges of business time scale@3,t,tC(n)#
characterized by well defined Hurst exponentHn for each
horizonn @39# @see Figs. 6~a!–6~d!#:

Hn50.0621n, whenn<12 ~8!

and

Hn50.8360.04, whenn>18. ~9!

Our finding means that the long horizon realized volatilit
(n.8) are persistent, i.e., volatility increments are positiv
correlated in business time, whereas the short-horizon v
tilities (n,8) are antipersistent, i.e.,Vn,8(t) displays nega-
tive autocorrelations in business time.

Furthermore, we find that the transition from antipers
tent to persistent volatility atn58 is accompanied by an
abrupt change in the behavior of minn$Vn(T54096)% versusn
@Fig. 7~a!#, nevertheless the time-average and the stand
deviations ofVn(t) have no anomaly atn58 @see Fig. 7~b!#.
Specifically, the time averaged volatility behaves
^Vn(t)&t54096}n0.5 up to n5700, while the standard devia
tion of realized volatility behaves ass(t5T54096)}n0.25

up ton518, but it scales ass}n0.5, when the realized vola
tility is characterized by the constant Hurst exponentH
50.8360.04.

Moreover, we find that the growth exponent behaves
@see Figs. 7~b!, 7~c!#

b50.25tC /t if t,tC~n! andb50.25 if t.tC~n!,

FIG. 5. ~a! Conditional probability distribution of crude oil price
in $/bbl ~bins: experimental data, solid lines: fitting by the logis
distribution!. ~b! Conditional probability distributions of price vola
tility for horizon n53 @bins: experimental data, solid lines fitting b
the Pearson distribution~15! ~p value is 0.41!, inset: the distribution
tail in the semilog coordinates#. ~c! Conditional probability distri-
butions of price volatility for horizonn518 @bins: experimental
data, solid lines: fitting by the log-logistic distribution~17! ~p value
is 0.38!, inset: the distribution tail in the log-log coordinates#. ~d!
Cumulative distribution of normalized avalanches in log-log co
dinates@circles: experimental data, solid lines: the graph of E
~19!; the squared coefficient of correlation between the data
theoretical line is equal toR250.9549].
03612
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whenn,18, ~10!

while b50.5 for anyt, whenn.18. ~11!

We also find that the interval of correlationstC in the busi-
ness time scale increases with the horizon of volatility
tC}nz(n,t), where the dynamic exponent is a function ofn
and t if n,18, while z5H/b51.66 for long horizonsn
.18 @see Fig. 7~d!#.

Accordingly, we find that the long-horizon volatility (n
>18) satisfies the Family-Viscek dynamic scaling ansatz~1!,
whereas for horizons smaller than 18 business days the c
oil price volatility satisfies the generalized dynamic scali
law @3#

s~n,t!}F••

„~t!H~n!,nb~t!
…, ~12!

with continuously varying scaling exponents~8! and ~10!,
which are quasihomogeneous functions satisfying the pa
differential equation@7#

] ln~Hn!

] ln~n!
52

] ln~b!

] ln~t!
51. ~13!

This implies that scaling functionF possesses a local scalin
invariance@3#, i.e.,

F„~lt!H~n!,~ln!b~t!
…5lF••

„~t!H~n!,nb~t!
…, ~14!

wherel is a dilatation parameter andn,18, t,tC .

-
.
d

FIG. 6. ~a!–~c! Fractal graphs of price volatility records show
in Figs. 2~b!–2~c! obtained by~a! the roughness length,~b! the
variogram, and~c! the rescaled-range methods@numbers correspond
to different horizons:~1! corresponds ton53, ~2! corresponds to
n58, ~3! corresponds ton520, and~4! corresponds ton560 busi-
ness days#. ~d! Horizon dependence of the Hurst exponent~values
of Hn are averaged through five methods! in the semilog coordi-
nates@time scale in business days, circles and squares: experim
data, solid line: data fitting by Eq.~8!, R250.9882].
1-4
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CROSSOVER FROM ANTIPERSISTENT TO PERSISTENT . . . PHYSICAL REVIEW E 69, 036121 ~2004!
The crossover from antipersistent to persistent beha
indicates the existence of intrinsic horizon scale of pr
volatility ~see Ref.@40#!, nC'8. To get a deeper insight int
the price volatility dynamics, we also perform the statistic
analysis of volatilitiesVn(t) and avalanches defined a
Q(n,t)5Vn11(t)2Vn(t).

We find that for short time horizonsn<8, the conditional
probability of realized volatility is best fitted by the ligh
tailed Pearson distribution@Fig. 5~b!#

f ~Vn!5
~Vn2f!2~g11!

r2gG~g!
expS Vn2f

r D ~15!

with horizon dependent parameters

r50.48n034~R250.95! and f50.13n20.69~R250.97!

~16!

andg53.6601; G~g! is the gamma function.
At the same time, for the larger time horizons,n.8, the

conditional probability of realized volatility is the log
logistic distribution@Fig. 5~c!#:

FIG. 7. Results of the scaling analysis of crude oil price vo
tility. ~a! The minimum of realized volatility versus time horizo
@points: experimental data, lines: power law fits~1! min(Vn)
51025n3.95, R250.97 and~2! min(Vn)50.014n0.66, R250.993].~b!
The mean~1! and the standard deviation~2,3! of realized volatility
(t54096) versus time lag,n @points: experimental data, lines
power law fittings.~1! ^Vn(t54096)&t51.5n0.5, R250.999, ~2!
s$Vn(t54096)%50.18n0.26, R250.995, and~3! s$Vn(t54096)%
50.1n0.45, R250.998; they axis labels indicate the quantity#. ~c!
The volatility growth exponentb versus normalized time interva
for volatility horizonsn53 ~1,2! andn560 ~3!; points: results of
analysis, lines: fitting by Eqs.~10! and ~11!. ~d! Horizon depen-
dence of dynamic exponent for price volatility~time scale in busi-
ness days!.
03612
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f ~Vn!5
g@~Vn2f!/r#g21

r$11@~Vn2f!/r#g%2 , ~17!

whereg52.5560.07 @41# and

r50.104n0.385~R250.998!, f50.0082n0.744~R250.996!;

~18!

i.e., the long-horizon volatility distribution is fat tailed, but
is well outside the stable Le´vy range 0,g,2 @42#.

Furthermore, we find that the statistical distribution
avalanches is also best fitted by the log-logistic distribut
with f50, r50.75n20.68 andg51.4660.02 ~the p value is
0.48!; obeying a power law tail@see Fig. 5~d!#:

F}12$Q/median@Q~t!#%21.46 ~19!

with the scaling exponentg within the stable Le´vy range
@41#.

This indicates that observed behavior of crude oil pr
volatility can be interpreted in terms of scale-free av
lanches, which define the intrinsic horizon scale and build
long-range correlations in the price volatility@43#. Such a
behavior can be modeled with the use of Kuramo
Sivashinsky equation@13# with white or correlated noise.

III. CONCLUSIONS

We show that the time series of price volatility can
analyzed within a framework of kinetic roughening of mo
ing interface, treating the length of series as an analog
spatial variable and the horizon of volatility as an analog
time variable. In this way we find that crude oil volatilit
possesses a general dynamic scaling behavior. Furtherm
we observe a transition from antipersistent to persistent
havior of the volatility in the horizon scale. This transition
accompanied by the change in the type of volatility distrib
tion, which is light-tailed for short horizons and it is heav
tailed for long horizons.

Our findings have potentially wide-ranging implication
in econophysics@44#, as well as in statistical physics of com
plex systems. Specifically, we expect that the crossover f
antipersistent to persistent behavior should be observed
wide variety of systems displaying generalized scaling
namics with continuously varying exponents@45#. The exis-
tence of a ‘‘universal’’ mechanism which gives rise to cros
over from antipersistent to persistent behavior in system
different nature could provide a new insight to the physics
complex systems governed by avalanche dynamics lea
to generalized scaling dynamics with continuously varyi
exponents.
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